

## Philadelphia University Faculty of Engineering Department of Computer First semester, 2009/2010

| <b>Course Syllabus</b> |
|------------------------|
|------------------------|

| Course Title: Modeling & Simula    | ation Course code: 630573                        |  |
|------------------------------------|--------------------------------------------------|--|
| Course Level: 5 <sup>th</sup> year | Course prerequisite (s) and/or co requisite (s): |  |
| Course Level. 5 year               | Department Approval                              |  |
| Class Time: 11:15 – 12:45          | Credit hours:3                                   |  |

# Academic Staff Specifics

|              |           | Office Number and | Office         |                              |  |  |
|--------------|-----------|-------------------|----------------|------------------------------|--|--|
| Name         | Rank      | Office Number and | E-mail Address |                              |  |  |
|              |           | Location          | Hours          |                              |  |  |
| Dr. Mohammed | Assistant | E-709             | 14:00-15:00    | m_selman@philadelphia.edu.je |  |  |
| Mahdi Ali    | Prof.     | E-709             | Weekly         | m_seman@pinadeipina.edu.j    |  |  |

## **Course description:**

To cover the principles of modeling and simulation, identification, representation and processing. It covers the design and implementation of analog and digital simulation and their engineering applications.

## **Course objectives:**

At Completing this course the student should be able to:

- Extract models.
- Simulate models in both analog and digital ways.
- Use Matlab package.

### **Course components**

• Books (title, author (s), publisher, year of publication)

B.S.Bennett, "Simulation Fundamentals",-Hall International 1995.

• Support material (s) (vcs, acs, etc). Matlab simulation program.

### **Teaching methods:**

Lectures, tutorials, problem solving, and computer aided design and simulation. Learning outcomes: upon completing this course, the student should have: -

- Knowledge and understanding
  - Basic understanding of modeling and simulation techniques.
  - Basic understanding of analog and digital simulation methods.
  - To be able to design real systems based on simulation results.
- Cognitive skills (thinking and analysis).

Be able to understand different available methods for modeling and simulation.

• Communication skills (personal and academic).

Key aspects of projects presentation are introduced.

- Practical and subject specific skills (Transferable Skills).
  - The student is able to design some kinds of real systems.
  - The use of Matlab software package tool will help the student in the design and analysis of real systems.

| Course Intended Learning Outcomes |                         |     |             |         |        |    |     |     |     |     |     |     |  |      |  |
|-----------------------------------|-------------------------|-----|-------------|---------|--------|----|-----|-----|-----|-----|-----|-----|--|------|--|
| A - Knowledge and Understanding   |                         |     |             |         |        |    |     |     |     |     |     |     |  |      |  |
| A1.                               | A2.                     |     | A3.         | A3. A4. |        | •  | A5. |     |     | A6. |     | A7. |  | A8.  |  |
|                                   |                         |     |             |         |        |    |     |     |     |     |     |     |  |      |  |
| B - Intellectual Skills           |                         |     |             |         |        |    |     |     |     |     |     |     |  |      |  |
| B1.                               | B2.                     | В   | <b>3</b> 3. | B4.     | B4. B: |    | 5.  | B6. |     | B   | 7.  | B8. |  | B9.  |  |
|                                   |                         |     |             |         |        |    |     |     |     |     |     |     |  |      |  |
| C - Practical Skills              |                         |     |             |         |        |    |     |     |     |     |     |     |  |      |  |
| C1.                               | C2.                     | C3. | (           | C4.     | С      | 5. | C6  | •   | C7  |     | C8. | C9  |  | C10. |  |
|                                   |                         |     |             |         |        |    |     |     |     |     |     |     |  |      |  |
| D - Tra                           | D - Transferable Skills |     |             |         |        |    |     |     |     |     |     |     |  |      |  |
| D1.                               | ]                       | D2. |             | D3.     | 6. D   |    | 4.  |     | D5. | )5. |     | D6. |  | D7.  |  |
|                                   |                         |     |             |         |        |    |     |     |     |     |     |     |  |      |  |

## Assessment instruments

- Short reports and/ or presentations, and/ or Short research projects
- Quizzes.
- Assignments.
- Final examination: 50 marks

| Allocation of Marks                                           |      |  |  |  |  |
|---------------------------------------------------------------|------|--|--|--|--|
| Assessment Instruments                                        | Mark |  |  |  |  |
| First examination                                             | 15   |  |  |  |  |
| Second examination                                            | 15   |  |  |  |  |
| Final examination: 50 marks                                   | 50   |  |  |  |  |
| Reports, research projects, Quizzes,<br>Assignments, Projects | 20   |  |  |  |  |
| Total                                                         | 100  |  |  |  |  |

# **Documentation and academic honesty**

• Documentation style (with illustrative examples)

There is no specific documentation.

# Course academic calendar

| (1)                      | material to be<br>covered<br>Introduction<br>Basic identification | their due dates |
|--------------------------|-------------------------------------------------------------------|-----------------|
| (1)                      | Introduction                                                      |                 |
| (1)                      |                                                                   |                 |
|                          | Basic identification                                              |                 |
| (2)                      |                                                                   |                 |
|                          | procedures                                                        |                 |
| (3)                      | <b>OP-AMP</b> operations                                          |                 |
| (4)                      | Analog systems                                                    |                 |
|                          | simulation                                                        |                 |
| (5)                      | Analysis and study of                                             |                 |
|                          | simulation results                                                |                 |
| (6)                      | How to build real                                                 | HW -1 Due       |
|                          | systems models based on                                           |                 |
| / <b>-</b> \             | simulation results                                                |                 |
| (7)                      | Introduction to digital<br>simulation methods                     |                 |
| First exam.              | simulation methods                                                |                 |
|                          |                                                                   |                 |
| (8)                      | Analysis and study of                                             |                 |
|                          | digital simulation results                                        |                 |
| (9)                      | Introduction to basic                                             |                 |
|                          | features of Matlab                                                |                 |
| (10)                     | Applications using                                                |                 |
|                          | Matlab                                                            |                 |
| (11)                     | Review                                                            | HW-2 Due        |
| (12)                     | Real-systems cases of                                             |                 |
| Second Exam.             | study                                                             |                 |
| (13)                     | Real-systems cases of                                             |                 |
| ()                       | study                                                             |                 |
| (14)                     | Real-systems cases of                                             |                 |
| ~ /                      | study                                                             |                 |
| (15)                     | Simple project                                                    | HW-3 Due        |
| (16)                     | Simple project                                                    |                 |
| <b>Final Examination</b> |                                                                   |                 |

#### **Expected workload:**

On average students need to spend 2 hours of study and preparation for each 50-minute class/tutorial.

#### **Attendance policy:**

Absence from classes and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

#### **Course references**

## Books

N.Sinha and Kuszta, "Modeling and Identification of Dynamic System", Prentice Hall, 1997.

Duane Hanselman and Bruce Littlefield, "Mastering Matlab: A Comprehensive Tutorial and References", ", Prentice Hall, 1998.